000 02887cam a22004577i 4500
001 20903207
003 KWUST
005 20230824081342.0
008 190325t20182018enka b 001 0 eng d
010 _a 2018275521
015 _aGBB8B9910
_2bnb
016 7 _a018921686
_2Uk
020 _a9781108472470
_qhardcover
020 _a1108472478
_qhardcover
020 _z9781108615136
_qelectronic book
035 _a(OCoLC)on1024086800
040 _aYDX
_beng
_cYDX
_erda
_dUPM
_dEYM
_dUKMGB
_dOCLCQ
_dOCLCF
_dYDXIT
_dDLC
042 _alccopycat
050 0 0 _aQA276.H365 2018
082 0 4 _a519.5
_223
082 0 4 _a519.2
_223
100 1 _aHarlim, John,
_eauthor.
245 1 0 _aData-driven computational methods :
_bparameter and operator estimations /
_cJohn Harlim, the Pennsylvania State University.
264 1 _aCambridge, United Kingdom ;
_aNew York, NY :
_bCambridge University Press,
_c2018.
264 4 _c©2018
300 _axi, 158 pages :
_billustrations (some color) ;
_c26 cm
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
504 _aIncludes bibliographical references (pages 151-155) and index.
520 _aModern scientific computational methods are undergoing a transformative change; big data and statistical learning methods now have the potential to outperform the classical first-principles modeling paradigm. This book bridges this transition, connecting the theory of probability, stochastic processes, functional analysis, numerical analysis, and differential geometry. It describes two classes of computational methods to leverage data for modeling dynamical systems. The first is concerned with data fitting algorithms to estimate parameters in parametric models that are postulated on the basis of physical or dynamical laws. The second is on operator estimation, which uses the data to nonparametrically approximate the operator generated by the transition function of the underlying dynamical systems. This self-contained book is suitable for graduate studies in applied mathematics, statistics, and engineering. Carefully chosen elementary examples with supplementary MATLAB® codes and appendices covering the relevant prerequisite materials are provided, making it suitable for self-study.--
_cSource other than the Library of Congress.
650 0 _aMathematical statistics.
650 0 _aStochastic analysis.
650 0 _aComputer science.
650 7 _aComputer science.
_2fast
_0(OCoLC)fst00872451
650 7 _aStochastic analysis.
_2fast
_0(OCoLC)fst01133499
776 0 8 _iOnline version:
_aHarlim, John.
_tData-driven computational methods.
_dCambridge, UK : Cambridge University Press, 2018
_z9781108615136
906 _a7
_bcbc
_ccopycat
_d2
_encip
_f20
_gy-gencatlg
942 _2lcc
_cBK
999 _c2431
_d2431